
Entropy: difference between all predictions, as defined by information theory

Margin of Confidence: difference between the top two most confident predictions

Least Confidence: difference between the most confident prediction and 100% confidence

Uncertainty Sampling Cheatsheet

y*1

y*2

y*3
y*4

number of labels (n) = 4

When a Supervised Machine Learning model makes a prediction, it often gives a confidence in that prediction.
If the model is uncertain (low confidence), then human feedback can help. Getting human feedback when a
model is uncertain is a type of Active Learning known as Uncertainty Sampling.
This cheatsheet has four common ways to calculate uncertainty, with examples, equations and python code.

n (1 - Pθ (y*1 | x))

n - 1

most_conf = torch.max(prob)
num_labels = prob.numel()
numerator = (num_labels * (1 - most_conf))
denominator = (num_labels - 1)

least_conf = numerator / denominator

Example Machine Learning Prediction (x):

1 - (Pθ(y*1 | x) - Pθ(y*2 | x))

prob, _ = torch.sort(prob, descending=True)
difference = (prob.data[0] - prob.data[1])

margin_conf = 1 - difference

- ∑y Pθ(y | x) log2 Pθ(y | x))

log2(n)

prbslogs = prob * torch.log2(prob)
numerator = 0 - np.sum(prbslogs)
denominator = math.log2(prob.numel())

entropy = numerator / denominator

Robert Munro. Human-in-the-Loop Machine Learning, Manning Publications. http://bit.ly/huml_book
See the book for more details on each method and for more sophisticated problems like sequence models and
semantic segmentation, plus other sampling strategies like Diversity Sampling. robertmunro.com | @WWRob

The predictions are a probability distribution (x),
meaning that every prediction is between 0 and 1 and
the predictions add to 1. y*1 is the most confident, y*2
is the second most confident, etc. for n predicted
labels.

This example can be expressed as a PyTorch tensor:
prob = torch.tensor ([0.0321, 0.6439, 0.0871,

0.2369])

Ratio of Confidence: ratio between the top two most confident predictions

Pθ(y*2 | x)

Pθ(y*1 | x)

prob, _ = torch.sort(prob, descending=True)

ratio_conf = (prob.data[1] / prob.data[0])

